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ABSTRACT

The benefits of low pressure Plasma Enhanced Chemical Vapor Deposition (PECVD) using

helium as the dilutant gas were investigated in a variety of conditions to identify the techniques

feasibility as a low band gap material yielding deposition method. Films and photovoltaic de-

vices with intrinsic layers processed at lower pressures with helium dilution are thought to

possess improved characteristics with lower hydrogen content and lowered optical band gaps.

When films are grown at lower pressures in the presence of helium the optical band gap tends

to decrease. Amorphous silicon a-Si:H generally has a band gap around 1.75eV. This work

intends to decrease this band gap as far as possible. Films grown under these conditions ex-

hibited reasonable growth rates considering the conditions and yielded very good photo and

dark conductivity.

It was expected that dilution with helium at low pressure would decrease hydrogen content

by increasing ion bombardment. This was confirmed by FTIR results that indicated hydro-

gen content of 7-9%. Both films and devices were fabricated that achieved optical band gaps

around 1.62-1.65eV. Devices exhibited Urbach energies that were typically lower than 50meV

indicating a good quality amorphous structure. High current and fill factor was not achieved

due to the possibility of an increase in defect density and high series resistances. The cause of

high defect density and series resistance was not determined.
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CHAPTER 1. INTRODUCTION

1.1 Background

Due to their positive economic and environmental implications, making photovoltaic cells

cheaper and more efficient has been of great interest for the past few decades. This research

is concerned with producing competitive efficiencies while using very little raw material by

depositing only a thin film. Amorphous silicon (a-Si:H) is able to provide a solution to this

problem by exhibiting a superior absorption coefficient. This permits extremely thin films (less

than 1 µm thick) to provide substantial power while requiring very little material to fabricate.

In addition, thin film solar cells can be stacked in a tandem cell structure so that different

materials with different properties can be fabricated together on the same substrate to gather

as much light as possible from the AM 1.5 G light spectrum[1].

Thin film photovoltaic cells may be fabricated in a variety of ways including but not lim-

ited to Plasma Enhanced Chemical Vapor Deposition (PECVD), but all methods of depositing

a-Si:H in some way disassociate the precursor silane or disilane into radicals that form a film

on the surface of some substrate. Photovoltaic cells can be grown in a variety of geometries

as well. Superstrate geometries use the substrate as a window layer for the light while the

alternative substrate down geometry (known as the substrate geometry) uses the top contact

to permit light absorption[25]. Devices created for this research were all fabricated using the

substrate growth geometry shown in Figure 1.1.

In this device geometry, under zero light bias, the device acts similar to a normal diode.

However, when an incident photon enters the structure by penetrating the top contact and
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p+ layer, there is a possibility that the photon will be converted into an electron hole pair.

The holes will then drift toward the p+ region and the electrons will drift toward the n+

region. Under short circuit conditions, this will result in a net current flow from the n+ to

p+ region proportional to the number of incident photons for a given area and the efficiency

of the photo generation. Under open circuit conditions, a charge buildup will occur in the n+

and p+ regions until the drift of electrons and holes is cancelled out by diffusion current. This

will result in a measurable voltage. This voltage is typically denoted as VOC .

An incident photon has several different possibilities of action when entering the struc-

ture; (1) the photon may be reflected and not even enter the structure; (2) the photon makes

it into the structure but is absorbed in the form of a phonon generating heat; (3) if it is not

absorbed as a phonon, it may enter the structure and never get absorbed and even reflect back

through the entire structure and not get absorbed on its second trip through; (4) it may be

absorbed in the intrinsic layer and result in the generation of an electron hole pair. Maximizing

the fourth case and minimizing the other cases makes up the majority of the research that is

performed in this field.

It is important to note that in order for an electron hole pair to be generated within

the intrinsic layer of the device, an incident photon must have energy greater than the band

gap of the semiconductor used for the intrinsic layer. This is the main cause of the third

case in the previous paragraph. Even if a photon has sufficient energy there is still a finite

possibility that it will not be converted into an electron and hole pair. Therefore the ultimate

goal is to grow a material that has a high photoconductivity, meaning it responds well to light

by producing carriers for electricity under illumination, and has as the smallest possible band

gap. Several different strategies have been developed to help improve absorption at longer

wavelengths, such as the incorporation of germanium into the intrinsic layer to form an alloy.

Germanium incorporation, however, comes at the expense of open circuit voltage and lower

photoconductivity at shorter wavelengths of light. Therefore a way to reduce the band gap of
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a-Si:H without significantly compromising other important device properties is of great interest

and is the goal of this research.

ITO

p+

i1
i2
n+

SS

Figure 1.1 Structure of a p-i-n substrate geometry solar cell.

Table 1.1 Device layer descriptions

Layer Description

ITO Indium Tin Oxide semitransparent top contact.
p+ Very thin boron doped window layer.
i1 a-SiC:H layer preventing boron and electron diffusion.
i2 Primary photon absorption layer a-Si:H with helium dilution.
n+ Thick phosphorus doped layer encourages EHP drift.
SS Mechanically polished bottom contact.

1.2 Research Motivation

In order to create devices and films capable of absorbing long wavelength AM 1.5G light,

a change to the growth of the intrinsic layer is needed. Specifically, the growth of a low band

gap intrinsic layer in a PIN diode arranged photovoltaic device is of great interest. Achieving

a lowered band gap in a-Si:H without the use of germanium, while sustaining high fill factors

and other device properties is a valuable addition to a tandem solar cell.

One method of growing lower band gap a-Si:H that has not been investigated until now,

has been the growth of an intrinsic layer under conditions near the low end of medium vacuum

(10-15mTorr) using helium ion bombardment. In essence, it is the deposition of an intrinsic

layer via plasma at pressures between 10-15mTorr with helium as a dilutant gas. Several chal-
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lenges exist when performing depositions at these pressures, but it is possible that the benefits

of a low band gap could outweigh any drawbacks in using this technique.

When using PECVD for deposition of the intrinsic layer (i-layer), 50mTorr and greater

is generally used. This is usually performed using hydrogen dilution, where 50mT is suffi-

cient to stabilize a plasma and deposit high quality films. Furthermore, using pressures in the

50mTorr range also increases the deposition rate of the film. Substrate temperatures are gener-

ally sustained at about 350◦C for the duration of the deposition. These parameters have been

shown to create devices and films with excellent results, but with band gaps around 1.75eV.

There are several changes and considerations that must be taken when growing an intrin-

sic layer under low pressure and using helium dilution instead of using hydrogen at relatively

higher pressures. These considerations include the possible instability of the plasma at this

pressure. Defect densities may tend to increase due to the increased mean free path of helium

ions, resulting in over bombardment. In addition, this unstable or weakly contained plasma

may increase the presence of defects by another mechanism. This other cause is due to the

ions approaching the ballistic transport regime within the vacuum. When the mean free path

of an ion within the plasma becomes greater than the size of the chamber, there is a high

probability that some ions may escape the electric field within the plasma. These ions then

find a obstacle free path to the walls of the chamber. Upon striking the chamber wall, these

ions may release contaminants from the wall of the chamber. These contaminants may then

travel into the plasma and be deposited on the substrate and cause defects in the amorphous

structure. Therefore it is evident that at lower pressures, the size of the chamber may become

an important consideration. To realize devices with very high current and low defect densities,

smaller mean free paths for helium ions may be necessary.

Additionally, since the mean free path is larger at lower pressures and more helium ions

will be able to bombard the surface, less plasma power should be required to provide sufficient
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bombardment. It is also expected that the bombardment of ions on the surface should be

much more sensitive to changes in power.

Also, lower pressures result in lower growth rates. While the usage of helium enhances

the growth rate at higher pressures, depositing at such low pressures still tends to result in

modest growth rates. Since helium is inert, it does not posses the ability to bond with amor-

phous structure. While this is helpful in that it plays a non invasive role in the resulting

film, it may also be a problem due to its inability to satisfy dangling bonds in the amorphous

structure. This problem manifests itself with high defect density and overall device quality

reduction. This reduction is due to the dangling bonds acting as recombination centers that

decrease the diffusion length and carrier lifetime in the intrinsic layer. This is an important

consideration due to the objective of this work. However, when depositing at lower speeds,

the hydrogen already bonded in the silane gas, may be sufficient for passivation. Furthermore,

since hydrogen is a product of the dissociation of silane it can serve as a mechanism to provide

passivation of dangling bonds in the film. Another important consideration is that the sub-

strate temperature at low pressure has a different effect than it does at higher pressure. It was

observed that the temperature that yields micro-crystallinity in the sample is reduced as pres-

sure is reduced during deposition. Therefore, careful consideration was taken regarding what

temperatures could be used. With the necessary deposition parameter modifications in place,

working devices were realized at low pressures. These devices possess reasonable growth rates

with respect to the pressure being used and exhibit some improvements over higher pressure

growth.

1.3 Fabrication with PECVD

PECVD, first introduced by Reinberg, is a modification to conventional CVD with the

introduction of a plasma to promote dissociation of precursor gases[2]. CVD has the advan-

tage in that it is capable of depositing very accurately controlled thin films. It is able to

accomplish this while still being an economical solution compared to other techniques and
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as a result is still widely used in research and industry today. While for the scope of this

research, only hydrides of silicon, phosphorus and boron were involved in deposition, PECVD

and other flavors of CVD are capable of depositing certain types of metals and ceramics [3].

The main reason for using PECVD is to decrease the temperature required to break down the

constituent gases (pyrolysis) and enhance growth rate while still growing a high quality film [3].

While conventional CVD uses thermal activation to initiate the reaction of the precur-

sors, in PECVD the reaction is activated by the presence of a plasma. This is why PECVD

is sometimes referred to as Plasma Assisted Chemical Vapor Deposition (PACVD). Since the

plasma is assisting in the reaction, the temperature of the substrate can be significantly lower

than that of CVD. When growing amorphous silicon, using this lower substrate temperature

helps prevent micro-crystallinity. There are different types of plasmas that can be used in

PECVD, either arc or glow discharge. Glow discharge is the type that was used in this re-

search, and is favorable because of it’s relatively low power requirements when compared to

arc discharge and its ability to operated at pressures lower than 2Torr[3]. Glow discharge is

considered non-isothermal, that is, the temperature of the system may not remain constant.

The plasma is produced using an electrode that has a Radio Frequency (RF) signal applied

to it. The signal is in the VHF or Very High Frequency range, and is around 47MHz. This

frequency undergoes minor tuning to enhance the stability and output of the power amplifier.

Within this plasma, silane, hydrogen and helium, depending on the gases chosen, will become

ionized and lose an electron. These loose electrons with temperatures in excess of 20,000K have

the ability to produce more free radicals than could have been produced thermally[2]. Since

the electron has a relatively low mass, it will be accelerated and oscillate at the frequency

of the electric field within which it is contained. These fast moving electrons bombard the

precursor gases and break them apart.

This dissociation produces reactive chemicals that can then easily form on the surface

of the substrate. Recall that while the substrate is still between 200-400◦C, it is relatively cold
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when compared to conventional CVD processes and will help prevent unwanted diffusion when

using dopants. Also, the ability to work at lower temperatures promotes the growth of amor-

phous phased silicon, which is of interest for this research. While the incomplete dissociation

of precursors in PECVD could be considered a drawback, it can actually serve as an advantage

for amorphous silicon by passivating voids in the amorphous structure.

All of the reactant precursors used for the PECVD of a-Si:H are in the hydride group.

The interested reader is directed to F. Kampass detailed explanation of ionization induced

disassociation[24]. The primary reactant gases are silane, diborane, and phosphine. The for-

mula that describes the reaction that occurs when depositing silicon for the doped layers and

intrinsic layer is the following[24]:

Due to incomplete dissociation in PECVD, the following are all possible products of the pre-

cursors in order of greatest to least probability:

Silyl Disassociation: SiH4(g) ⇒ SiH3(s) + H(g)

Silylene Disassociation: SiH4(g) ⇒ SiH2(s) + H2(g)

Silicon Monohydride Disassociation: 2SiH4(g) ⇒ 2SiH(s) + 3H2(g)

When depositing n-type layers, the following formula describes the reaction, this is the de-

composition of phosphine:

PH3(g) ⇒ PH2(s) + H(g)

PH3(g) ⇒ PH(s)+H2(g)

When depositing p-type layers, the following formula describes the reaction, this is the de-

composition of diborane:

B2H6(g) ⇒ 2BH3(s)

BH3(g) ⇒ BH2(s)+H(g)

BH3(g) ⇒ BH(s)+H2(g)
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All of these reactions are considered hydride decompositions[3]. Notice that for all decom-

positions, there is always a chance of incomplete dissociation. In fact, the probability that the

precursor will be completely dissociated is quite small and there is a strong presence of hydro-

gen bonds even after the reactant chemical has formed at the surface of the substrate. While

detrimental in some applications, as stated before, this actually helps passivate any voids in

the structure and is the reason that amorphous silicon of this type is considered hydrogenated.

From these concepts, there are several deposition parameters that were carefully considered

and modified throughout the course of this research. All of these parameters, except for cham-

ber volume can be considered as useable tools for optimizing growth. These are shown in Table

1.2 with their units and description.

Table 1.2 Fabrication parameters

Parameter Variable Units Description

Pressure P Torr Chamber Pressure
Temperature C ◦Celcius Substrate temperature
Time t Minutes Duration of deposition
Power Watts Forward power delivered to the electrode
Flow rate sccm standard cm3 per minute
Relative flow rate % Percentage of maximum flow rate
Plasma voltage1 V Volts Voltage measured from electrode to ground (RMS)
Chamber volume Liters PECVD chamber volume (22.74 liters)

1.4 Previous work and literature review

1.4.1 Helium ion bombardment and hydrogen content

Extensive work has been accomplished to model and explain the mass transport mechanisms

for PECVD. However, as pressures approach the low mTorr range, typical sequences that

describe deposition may no longer apply. This is especially true when using a dilutant gas

other than hydrogen. Before investigating these implications, the literary backing behind

the rational of using helium and low pressures must be discussed. In Figure 1.2 V. Dalal [4]
1Plasma voltage should not be confused with plasma potential.
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showed that the usage of helium ion bombardment significantly reduces hydrogen content. This

is caused by the helium ions bombarding and breaking the hydrogen bonds from the surface

of the amorphous structure[4]. It is therefore expected that if using helium as a dilutant

gas, the process of ion bombardment during the deposition should result in a lower hydrogen

content. Extensive studies and experiments have shown that a hydrogen content has a positive

relationship with optical gap[5-10]. Since a lower band gap is desired, lower hydrogen content

is a fundamental goal. In fact work has already been done to model the band gap with respect

to hydrogen content by the Penn gap expression[11]:

Eopt = 1.50 + 1.47CH (1.1)

Since optical gaps below 1.65eV are desired, hydrogen content of CH less than 10% is desired.

This requires effective ion bombardment. The purpose of working at lower pressure can be

summed up in the following sentence. Since the chamber pressure has been lowered, the mean

free path of heavier helium ions should be sufficient that they are able to more easily reach the

substrate and remove surface hydrogen bonds. This is the reason that helium bombardment

is being coupled with low chamber pressures.

1.4.2 Ion bombardment-induced damage

The possible implications of low hydrogen content should be a decrease in optical band gap.

This however, may come at the expense of dangling bonds in the amorphous structure due to

the removal of hydrogen. These dangling bonds act as recombination centers and ultimately

hinder current. In addition to helium possibly over bombarding the surface, using the proposed

lower pressure can also increase the ion mean free paths within the plasma to levels that may

increase ion bombardment-induced damage[12]. This is indicated by an increase in ion density

shown in Figure 1.3. It will therefore, be important to verify that the hydrogen content is lower

than that of hydrogen diluted a-Si:H but not so low that defect density becomes unreasonably

high.

Another plot Figure 1.4 verifies this with an Electron Cyclotron Resonance (ECR) plasma.
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Figure 1.2 Hydrogen content of a-SiGe:H plotted versus Tauc gap with
hydrogen and helium as a dilutant gas.[4]

While ECR does fundamentally change deposition parameters, the plasma potential trend can

be considered to be similar. According to the plot, working at pressures above 15mT with

helium dilution were sufficient to avoid excess ion bombardment-induced damage when using

ECR. Ideally the same would hold true for conventional PECVD.

An interesting note is that helium has a relatively high ionization energy compared to

that of hydrogen and silane. Helium has an ionization energy of around 24.6eV while hydrogen

has 13.6eV[14] and silane has about 12eV[15]. Helium does however have several metastable

energy levels that allow ionizations at energies lower than its ionization energy. These energy

levels are still quite high in comparison and will pose a problem when attempting to perform

helium chemical annealing. It was observed in this work that it was not possible to stabilize a

plasma consisting of only helium ions at the working power and pressures for true helium chem-
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Figure 1.3 Langmuir probe data showing ion density plotted versus cham-
ber pressure. Indicates that both ion density and energy in-
crease with decreasing pressure [12].

ical annealing. To circumvent this problem, a small amount of hydrogen and an increase in

power were sufficient to keep the plasma stabilized. However, as a noble gas, helium works well

as a dilutant for sustaining a plasma with mixtures of silane, PPM trimethylborate (TMB),

and PPM phosphine (PH3). The main focus of the investigation of previous work is based on

the properties of a-Si:H grown using helium and its implications.

1.4.3 Helium dilution effects on growth rate and defect density

Very little work currently exists regarding the use of helium coupled with low pressures.

However, it has been explored as being a high growth rate alternative to hydrogen due to its

non-etching qualities. Middya et al [13] showed that when using helium as a dilutant gas in the

formation of a-SiGe:H films, higher growth rates were observed. Figure 1.5 shows this trend

plotted with hydrogen dilution when varying optical band gaps. Middya [13] also indicated

that defect densities, when using helium as a dilutant gas, were comparable to defect densities

of hydrogen diluted films with the same optical band gaps. It was also observed that the helium



www.manaraa.com

12

 

Figure 1.4 Plasma potential versus chamber pressure in a helium diluted
plasma [13].

diluted films exhibited improved electron and hole transport properties. This is consistent with

the notion that the microstructure of the alloy had improved and that the defects were from

different mechanisms.

An obvious question is why helium isnt used as a dilutant gas at higher pressures. This

has, in fact, been done and has some applications for those seeking very thick intrinsic layers.

Properties at higher pressure with helium dilution, however, do not have the qualities that

are considered optimal for highly efficient photovoltaic cells. Pochett et al [16] found that

helium as a dilutant gas had a very positive effect on growth rates and reported achieving up

to 15 Angstroms per second. A more modest 8 angstroms per second was achieved by using

a relatively high pressure (≈ 550mTorr), high power (≈ 15W ) and higher silane flow. With

these parameters, Pochett [16] was able to achieve reasonable Urbach energies (≈ 54meV ) and

low defect density (≈ 9×1015cm−3) through Photothermal Deflection Spectroscopy. However,

this came at the expense of a large E04 gap of about 1.93eV.
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Figure 1.5 High growth rate samples with helium and hydrogen dilution.
Plot shows growth rate versus different optical gaps.[13]

This is likely due to large hydrogen content of around 16% along with very low mobilities of

around .3cm2/V s[16]. This indicates a large presence of incomplete silane disassociation in the

form of SiH2 bonds. For Pochetts [16] application of very thick nuclear and x-ray detecting

layers, these parameters were not as important. Since the scope of this research is to lower the

band gap of amorphous silicon, higher pressures above 50mTorr and high power greater than

about 60mW/cm2 were avoided. It is likely that decreasing to such low pressures will sacrifice

the low density of states in the mid gap realized at higher pressure. This increase in defect

density may come from the large mean free path of ions that allows ions to over-bombard the

surface.

To that end, Roca et al [17] noted that at low pressures, the effect of increasing power

had a smaller effect on growth rate than it did at higher pressures. This indicates that there is

no clear advantage in venturing above 60mW/cm2 during the deposition. Roca [17] also found
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that when using a hot wall reactor that careful control of substrate temperature, while critical,

was extremely difficult to control. To compound this problem, Roca [17] also indicated that

as the pressure of the chamber increased or decreased with different gases, the temperature of

the substrate was significantly affected. For this reason, the effects of different substrate tem-

peratures were avoided due to its unreliability in favor of other parameter effects. It was found

that when substrates were maintained between 300◦C and 350◦C, there was no discernable

difference in growth parameters and film quality.

1.4.4 Helium dilution and functional material properties

With a heaver ion, the kinematics of PECVD says that more of the precursor material

will be broken down on the surface of the substrate. That is, it is easier for an SiH2 bond

to break with the presence of helium ion bombardment. Kaushal et al [18] showed that using

helium with glow discharge produced a-Si:H films with Tauc gaps around 1.67eV as opposed to

gaps of 1.75eV seen with hydrogen. Kaushal [18] also stated that reactive ions go deep into a

material and perform etching during growth while inert ions like helium remove excess bonded

H mainly from the surface. Kaushal [18] also stated that higher substrate temperature for Hot

Wire Chemical Vapor Deposition (HWCVD) produced devices with Urbach energies around

46meV. Zhu et al [19] said that in the best a-Si:H films, Urbach energies of 42-43meV were

achieved. These positive effects on band gap by removing surface hydrogen may be further

improved by chemically annealing to further reduce the optical gap.

1.4.5 Helium chemical annealing

Chemical annealing using hydrogen has been investigated by many research groups as a

means of slowing the rate of light induced degradation known as the Staebler-Wronski effect[14].

In the case of hydrogen annealing, an increase in hydrogen content occurs. This will help avoid

the Staebler-Wronski effect, but will increase the optical gap, which was shown by Futako et

al[5-6]. If inert ions are used during the annealing process instead of hydrogen, the hydrogen

content of the material actually decreases. The objective of this research is to try to reduce
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the hydrogen incorporation so that the optical gap of a-Si:H can be lowered. Figure 1.6 shows

the correlation between hydrogen content and optical band gap[6]. This figure clearly shows

the importance of reducing hydrogen content to reduce band gap. Additionally, the usage of

a heavy inert ions like argon appears to significantly reduce band gap by ion bombardment.

Although these results are for argon, helium should exhibit similar annealing properties by

removing excess hydrogen on the surface and decreasing band gap. However, Futako [6] did

not comment on all device and film quality measurements. It is possible that films with very

low hydrogen content (≤5%) may have undesirable properties. Since using helium as a dilutant

gas alone may be enough to lower hydrogen content to around 5%, further chemical annealing

may adversely impact parameters by forcing insufficient hydrogen passivation.

 Figure 1.6 Taucs gap versus hydrogen content by atomic percent. Squares
indicate annealing with Argon and circles indicate annealing
with hydrogen [6].
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1.4.6 Other growth parameters that affect optical gap

The first parameter that until now has not been discussed in this work is substrate tem-

perature during growth. Myburg and Swanepoel [20] showed that as substrate temperature is

swept from -50◦C to 400◦C, the incorporation of hydrogen decreases along with Taucs gap. M.

K. van Veen et al [23] also found that when depositing at higher temperatures with HWCVD,

lower hydrogen content was observed. Therefore, temperatures will be kept above 300◦C for

the purposes of this research during intrinsic layer depositions. It was also found that as tem-

perature increases, growth rate decreases. Since the effect of increasing temperature has less

effect on band gap above 300◦C, temperatures for this research will not exceed 400◦C [20].

Another parameter that has not been discussed in detail yet is power delivered to the

electrode. Myburg and Swanepoel [20] showed that as power increased, optical gap also in-

creased. Therefore it will be important to use a rather modest amount of power during the

depositions of the intrinsic layer. Sufficient power will be required to; (1) stabilize a plasma

that can disassociate SiH4; (2) provide enough energy to produce significant helium ion bom-

bardment; (3) provide practical growth rates.

RF also has a strong impact on deposition parameters. Since the frequency of the plasma

governs how far a particular ion in a plasma will travel by an inverse relationship, higher power

is often required to compensate for very high frequencies. Typically 13.56MHz is chosen as

the deposition radio frequency. However for this research 47MHz was used. Therefore it is

not possible to directly compare growth rate parameters of systems operating under different

radio frequencies. It has been found that around 2.6W (57mW/cm2) coupled with 47MHz

yields reasonable growth rates and excellent consistency of amorphous phases for the PECVD

reactor that was used.
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1.4.7 Industry Achievements

Many different research groups both academic and commercial are working in parallel to

strive for the best combination of techniques to produce the most efficient solar cell devices.

This section is concerned with the investigation of several government and commercial research

groups and their achievements.

The National Renewable Energy Laboratory (NREL) has several groups working on the

tandem triple junction photovoltaic cell. The group working specifically on a-Si:H has been

working to improve device stability, improve efficiency, improve narrow band material quality,

and increase deposition rates. The work related to improving narrow material quality is of

interest because of its relation to this work. NREL [27] has reported that using a-SiGe:H,

Tauc band gaps of less than 1.5eV have been achieved. NREL has also achieved high values

well above .9V and fill factors above 60% even after degrading[27]. However the measured cur-

rent density is a more modest value[27]. This was performed using Hot Wire Chemical Vapor

Deposition (HWCVD)[27]. It was found that decreasing filament temperature improved the

quality of low band gap devices[27].

Another very well known research group known as Uni-Solar R© is also working on im-

proving the quality of a-Si:H devices. Uni-Solar R© has reported obtaining Tauc gaps using

germanium alloyed a-SiGe:H of around 1.4eV[28]. Uni-Solar R© has also reported outdoor effi-

ciencies consistently greater than 6% while ranging temperature from 0-35◦C[29]. This proves

the viability of this technology in a wide range of earthly climates.
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CHAPTER 2. METHODOLOGY AND PROCEDURES
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Figure 2.1 PECVD reactor schematic

2.1 PECVD reactor design

The PECVD reactor used for fabrication of films and devices was a glow discharge cold-

walled reactor shown in Figure 2.1. This reactor has a horizontal orientation. That is, the

electrode that induces the plasma is parallel to the surface of the substrate that is being de-

posited on and is at a 90 degree angle to the ground. The vacuum and gas flow to the chamber

is orientated behind the substrate holder and is also horizontal. This orientation has an advan-

tage in that gravity doesn’t encourage foreign objects into the vacuum pump lines, protecting
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the rotary and turbo pump assemblies. Also, since the electrode and shutter assemblies are

not above the sample, debris is less likely to fall onto the substrate or electrode during a depo-

sition. Because of this orientation, the reactor has a top loading substrate holder. This holder

contains the heating elements within it.

An ideal situation would be to keep the reactor at high vacuum all the time and intro-

duce a sample through a series of pressure interlocks. However, such an elaborate system is

not necessary if proper purging techniques are used. Without an interlock system, the deposi-

tion chamber can at times be exposed to atmospheric pressure. This occurs when the reactor

is having a sample loaded, unloaded, or when the reactor is being cleaned. Once loaded, the

most economical and practical way to reach a medium vacuum level of around 1 Torr is to use

a rotary vane pump. Often known as a roughing pump due to the region of pressure opera-

tion that it works in, this pump can quickly bring the chamber from atmospheric pressure to

medium vacuum levels. This pump connects to the side of the chamber behind the substrate

holder. Since depositions are in the medium vacuum range, but are near the high vacuum

range, utilization of a turbo-molecular pump provides the ability to quickly purge and achieve

the proper level of vacuum to sustain the desired plasma within the chamber.

The precision when throttling the turbo-molecular pump is quite consistent at pressures

less than 1 Torr and above 1 mTorr and can stay at a given pressure for hours with negligible

pressure deviation. Given the nature of this research, the ability to hold a consistent vacuum

is imperative in obtaining reliable data. The turbo-molecular pump used on the reactor is also

a horizontally mounted pump. Behind the turbo-molecular pump is another rotary vane pump

that acts as a backing pump. This pump removes gases that have been pulled through the

turbo-molecular pump. It also acts as a barrier between the atmospheric pressure exhaust and

the high vacuum region that the turbo-molecular pump operates within.

In order to safely operate and monitor the pumps, a set of gauges are employed for accu-
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rately measuring pressure. The first gauge is a pressure transducer that operates in regions

greater than 1mT. At pressures in the high vacuum range, an Ion gauge is used. The ion

gauge has a useful range well below what is required for the reactor. The ion gauge is only

used briefly for recording pressures after purges and when the chamber has been thoroughly

evacuated. The pressure transducer gauge is useful within the range of pressures used during

depositions.

In addition to the elaborate gas removal system, another equally important system is

responsible for gas admission into the chamber. A series of gas cylinders store hydrogen, he-

lium, silane, methane, TMB and phosphine. An initial flow regulator brings the pressure from

1000psi and higher to a much lower level depending on the gas. From here, solid metal tubing

brings the gas into a more advanced set of flow regulators. These regulators control the amount

of gas that is permitted to reach the reactor chamber when gases are enabled.

Given their different uses, there are three different classifications of gas types that enter the

reactor. These are intrinsic line gases, plasma line gases, and dopant line gases. Dopants can

be parasitic to intrinsic films and are kept separate from the intrinsic and plasma lines until

just before entering the reactor. Since the plasma line only carries hydrogen and helium, the

intrinsic line merges with the plasma line shortly after gases leave the set of individual flow

regulators. Next to the flow regulator control panel is another panel with a series of switches

which enables the flow of any of the gases required. There are other gas lines that also enter.

One is a N2 line used to bring the reactor to atmospheric pressure and for purging. In addition

to the N2 line is an O2/N2 mixture line that is used to create an oxygen plasma, which has

the purpose of neutralizing boron in the reactor.

With a proper gas flow system and vacuum system, some method of producing a plasma

is required. This is done by applying 3-7 Watts of RF signal to a 3 inch diameter (76.2mm)

electrode that sits opposite the substrate and holder. This electrode is attached to the reactor
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wall, but is electrically isolated. A coaxial cable connects to the outside of the reactor and runs

from a power meter to a power amplifier. The power amplifier is driven by a signal generator.

The reactor is equipped with a shutter that can be moved so that it rests between the substrate

and the electrode. This allows plasmas to be ignited without depositing on samples. The sub-

strate holder which contains the heating core also contains two separate thermocouples. The

heater automatically adjusts to hold a consistent temperature.
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CHAPTER 3. CHARACTERIZATION

3.1 Film Characterization

3.1.1 UV/Vis/NIR spectroscopy

UV/Vis/NIR spectroscopy can measure the absorption, transmission, and reflection of

films. This information yields accurate information about film thickness and optical gap. Mea-

surements were performed using the Perkin-Elmer Lamba 9 spectrophotometer. To evaluate

a film thickness a plot of the transmitted light as a percentage was plotted over the spectrum

of visible to infrared light. This produced a plot with the appearance of an oscillation. The

position of the peaks and valleys of the transmittance are characteristic of the thickness of the

film (Figure 3.1). The thickness can be evaluated using the following expression:

t =
λ1λ2

2(λ1n2 − λ2n1)
(3.1)

Where λ1 and λ2 are the locations of adjacent peaks in transmission and where n1 and n2 are

the refractive indexes for the corresponding wavelength of light. The values for n1 and n2 are

referenced from a table depending on which wavelengths are identified as peaks, and what the

approximate band gap of the material is.

Transmission and absorption measurements are not possible with devices, thickness is mea-

sured using reflection instead of transmission. In order to minimize the variations in reflection

from light scattering from different directions, an integrating sphere is used to provide uniform

scattering and effectively remove the effect of light incident from different angles.
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Figure 3.1 Film transmission curve.

The spectrophotometer is actually only able to measure reflection and transmission. Ab-

sorption is calculated using the following equation:

A(λ) = log10

[
1

T (λ)

]
=

ln (1/T (λ))
ln 10

(3.2)

It is also known that transmission is approximately given by the following expression:

T (λ) = (1−R(λ)) exp (−α(λ)t) (3.3)

Where T (λ) and R(λ) are the transmission and reflection respectively measured by the spec-

trophotometer. The variable α(λ) represents the absorption coefficient of the sample and t is

the thickness of the film measured by equation 3.1. The absorption coefficient can be solved

for as a function of absorption, reflection and thickness from the equations 3.2 and 3.3. This

is given by:

α(λ) =
ln (10)A(λ) + ln (1−R(λ))

t
(3.4)

When plotted with respect to photon energy, absorption coefficient yields the plot in figure
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3.2. Unfortunately since no sample is infinitely thick, some oscillation will be observed. By

carefully approximating the running average between the peaks, a linear region will appear in

the plot. Where this linear region intersects α = 10, 000 is the measurement known as E04

gap. Since no linear extrapolation is required, the measurement has much lower error, but is

actually quite far from the actual optical gap (≈ .15eV). E04 gap serves as more of a reference

point for consistency between samples by removing error from the subjectivity of the linear

region in the absorption curve. Therefore when expressing trends between devices or films

with respect to optical gap, E04 is the preferred due to its high level of precision.
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Figure 3.2 E04 gap extraction from absorption coefficient versus. This film
possesses an E04 gap of about 1.83eV.

Another more accurate, but also more subjective measurement is that of Taucs gap. Taucs

gap is revealed by plotting
√
αE. This yields the plot shown in figure 3.3. When the linear

region is extrapolated to the x-axis, the materials optical gap is revealed. This optical gap is

known as Taucs gap. Since Taucs gap is closer to the actual band gap of the material, when

reporting band gap of individual samples, Taucs gap is the default parameter to report.
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Figure 3.3 Extrapolated linear region for measurement of Taucs gap. This
film possesses a Taucs gap of about 1.64eV.

3.1.2 Activation energy

Activation energy was measured by measuring currents given an applied voltage of about

100V at different temperatures. This should not to be confused with activation energy of

constituents in deposition. Evaluating activation energy requires initially heating the sample

to about 200◦C and keeping it there for about 30 minutes. The sample is then allowed to

cool. At every 10 degree interval the current is recorded. These different current readings

form a straight line when the natural log operation is applied and the slope of that line is

characteristic of the activation energy of the material.

EA = EC − EF (3.5)

EA =
∣∣∣∣ ln(I2)− ln(I1)
[1/T1]− [1/T2]

∣∣∣∣ k (3.6)

The plot of the natural log of current versus inverse temperature yields a linear plot that can

be used to evaluate activation energy. This measurement is an indicator of the location of
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the Fermi level in the material and is useful in determining whether a material is doped or

undoped. Ideally with a band gap of about 1.6eV, the activation energy should be around

.8eV, indicating that a material is nearly intrinsic.

3.1.3 Photo/Dark conductivity

To measure the responsiveness to light, measuring the conductivity of a sample under light

and dark conditions is useful. This is done by exposing the sample to AM 1.5 G light and

recording the current under a 100V bias. A good sample should have 10-100uA of photocurrent

given the contact geometries patterned by the chrome evaporator masks. The light is then

turned off and the current settles. After a time period of 15-30 minutes, the sample should

settle on a value. This is its dark current. A good sample should have dark current in the

10-100pA range. An electrometer is used to supply the voltage bias and to measure the current

through the sample. The ratio of these two yields a number that is indicative of the samples

relative response to light. Generally a ratio greater than 10E+5 is considered good.

3.1.4 Urbach energy

Since amorphous silicon does not have a well defined single band gap, as indicated in the

previous section, it is necessary to identify how clear a band gap is. One way to do this is

to evaluate how quickly absorption decreases as the energy of photons is decreased to the

band gaps energy. In a perfect crystalline semiconductor, the density of states should fall very

sharply, however in an amorphous or nanocrystalline material, the band tails. To gather in-

formation about the band tails, a light source is conditioned through a monochromator and a

light chopper. This monochromatic chopped light is then focused on the sample. At the same

time the sample is under a DC light bias. This DC light bias serves to ensure that photogen-

erated carriers fill the mid-gap states. This can be observed in Figure 3.4. Since the lock-in

amplifier will only measure voltages that are the same frequency as some reference, in this case

the chopper, only the voltage increase from the monochromatic light is measured. This not

only makes sure that the DC light bias is not counted as photocurrent, but it also removes
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any other noise sources including the 60Hz light sources in the background. As the wavelength

of light is stepped through longer values, the current output of the cell should decrease. This

effect can be seen in Figure 3.5.

SRS 830 Lock-in Amplifier

Light
Source

Monochrometer

Light Chopper Focusing Lenses
Mirror DC Light Bias

DC Voltage Bias

Sample

Figure 3.4 Quantum Efficiency measurement setup.

When plotted, a linear region (actually exponential) will appear through the center of

the oscillations (see figure 3.5). Urbach energy can then be approximated using the following

expression:

EU =
E2 − E1

ln(10)(log10(α2)− log10(α1))
(3.7)

Where E1 and E2 are two different photon energies in the linearly extrapolated line and where

α1 and α2 are two corresponding absorption coefficients. Generally E1 and E2 are chosen so

that they lie on decade intervals of α to simplify the calculation. This yields a number generally

between 40meV and 60meV. Lower EU indicates higher material quality. Urbach energy also

serves as an indicator of mid gap trap states. These trap levels reveal themselves as a shoulder

around 1.3eV. Generally as defect density increases, this shoulder increases in size.
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Figure 3.5 Subgap QE plot showing absorption coefficient versus photon
energy. Plotted on a log scale.

3.1.5 Fourier Transform Infrared Spectroscopy

Fourier Transform Infrared Spectroscopy (FTIR) is different from Raman scattering in that

it actually measures the bonds that are present in a material instead of what chemicals are

present. This measurement setup uses an infrared laser to facilitate a resonation within the

bonding structure of a material. Similar to resonating a tuning fork by subjecting it to sound

equal to its fundamental frequency, the bond resonations yield a time delay. When varying

the distance of a reference beam to a mirror, temporal coherence between the reference beam

and the beam can be measured. This coherence pattern can then be plotted with respect to

wavenumber. This yields the plot shown Figure 3.6. All peaks are characteristic of some type

of set of bonds. This is especially important when determining hydrogen content because it

yields information about the relative ratio between SiH2 bonds and SiH bonds. Therefore from

the plot below, the ratio of peak 5 to peak 6 indicates the SiH:SiH2 ratio. Good quality films

have large SiH:SiH2 ratios (≥ 4).
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Figure 3.6 IR spectra for helium diluted a-Si:H film grown at 350◦C.

Work performed by Brodskey et al [30] related hydrogen content by atomic percentage of a-

Si:H to the resulting IR spectra. Brodskey indicated that the integration of peak 2 of the

IR spectra, which is centered on 640/cm yields the total hydrogen content of the film. This

integration follows the following expression.

NH = A

∫
α(ω)
ω

dω (3.8)

Where α is the absorption coefficient, ω is the wavenumber, and A is an experimental con-

stant. The resulting number is a percentage. It should be considered that a large amount of

subjectivity is realized throughout the hydrogen content calculation. Not only is it difficult

to accurately evaluate the thickness, the accuracy is also affected by how well the peak fitting

routine actually resembles the hydrogen peak. Brodskey also indicated that the relative mag-

nitudes of the 2000/cm and 2085/cm peaks corresponded to the relative content of SiH and

SiH2 bonds respectively. When the ratio of the 2000/cm and 2085/cm peak is taken, it yields

the ratio of SiH to SiH2 bonds where SiH bonds are desired[30].
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3.2 Device characterization

3.2.1 Devices I-V curves

One of the first measurements that is often used to determine gross failures and overall

functionality in a photovoltaic cell is the current versus voltage measurement or IV measure-

ment. This measurement yields information about the devices fill factor (FF ), short circuit

current (ISC), and open circuit voltage (VOC). ISC measures the current that flows when both

sides of the PN junction are at the same potential. As voltage is increased in forward bias

eventually the current will fall to zero. This point is considered VOC . FF is a measure of how

well the actual device follows an idea diode curve which is governed by equation 3.9 where

Vm and Im are the corresponding voltage and current where power delivered is maximum.

Total efficiency can be calculated from equation 3.10 where PIN refers to power incident on

the surface of the photovoltaic cell.

FF =
VmIm
VOCISC

(3.9)

η =
ISCVOCFF

PIN
(3.10)

IV measurements also yield information about the series resistance of the solar cell, as well

as the shunt resistance. Series resistance can be approximated by evaluating the slope of the

linear region near VOC . Shunt resistance is calculated from the slope of the linear region at

negative voltages. Shunt resistance is characteristic of collection in the i-layer and should be

as flat as possible.

3.2.2 Quantum efficiency and subgap quantum efficiency

Quantum Efficiency or QE along with its sub gap counterpart are likely the greatest con-

tributors to information about device performance and material structural properties. Qual-

itatively, QE is the ratio of collected carriers at a particular wavelength to the number of

incident photons. This is generally expressed as relative QE where the entire QE measurement

is normalize to the peak absorption keeping all values less than 1. This removes a large amount
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of variation between samples and makes comparison more straight forward. QE measurements

use the same physical system as the sub gap measurements shown in Figure 3.4. However the

method of data manipulation is different. The expression in equation 3.11 shows the relation-

ship between QE, absorption α, film thickness t, µτeff product, and the electric field across

the depletion region E(y).

QE(λ) =
∫ t

0
α(λ) exp(−α(λ)x) exp

(
−
∫ x

0

1
µτE(y)

dy

)
dx (3.11)

The QE measurement is conducted over the entire usable range of the device. Since under

normal operation a solar cell will be biased near its max power point, another .5V biased QE

measurement is taken to see how well absorption occurs when the electric field is reduced.

Ideally the biased absorption should be equal to the unbiased absorption. However in practice

ratios of 0V bias over .5V bias less than 1.2 are acceptable.

3.2.3 Device band gaps

Since transmission and absorption measurements cannot be taken for a device, it is im-

possible to directly measure the band gap of the device with the same accuracy that films

are. However, the normalized sub gap QE plot of two different samples can be compared to

estimate the actual band gap if one of the devices has a known band gap. By comparing all

devices to a known a-Si:H sample with a band gap of about 1.75eV, a good approximation of

E04 gap and Taucs gap can be determined. In order for the measurement to be successful,

the device must have an Urbach energy lower than 50meV and all device parameters such as

thickness and normalized QE must have been taken. By shifting the plot so that the sub gap

QE plots match, the shift will reveal the band gap of the material.
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CHAPTER 4. RESULTS AND DISCUSSION

4.1 Semiconductor band gap

Optical band gap measurements for Taucs gap and E04 gap were measured on both devices

and films. However, since the measurement for optical gap for devices is derived from a fitting

routine that is governed by a reference film and device, these measurements should inevitably be

consistent with films and will therefore be reported together. Standard devices with hydrogen

dilution exhibit about 1.75eV for Taucs gap and 1.9eV for E04 gap. Films typically exhibited

mid to upper 1.6eV Taucs gaps. However band gaps as low as 1.62eV were reported. Devices

initially exhibited band gaps in the upper 1.6eV range, but later decreased when using TMB

grading. The plot in Figure 4.1 shows the relative distributions of optical gaps for both devices

and films during the progression of the research. As the deposition procedure was refined

optical gaps began to decrease. Optical gaps varied by roughly for both films and devices.

Initial films and devices yielded higher optical gaps, while later structures possessed lower

optical gaps. Using optimized growth parameters, optical gaps can consistently be achieved

with gaps lower than 1.64eV. Statistical information regarding Taucs optical gap can be found

in Table 4.1.

Table 4.1 Population tauc gap statistics (eV)

Structure Mean Minimum 25% Median 75% Maximum

Devices 1.648 1.62 1.63 1.6525 1.6658 1.68
Films 1.663 1.63 1.6475 1.66 1.675 1.7
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Figure 4.1 E04 gap distribution for devices and films versus chronological
order of samples.

4.2 Film results

4.2.1 Growth rate

Growth rates of the intrinsic films grown under helium dilution and hydrogen dilution are

shown in Figure 4.2. These results indicate that helium is marginally faster than hydrogen

dilution, especially at higher pressures. This is a positive result for helium dilution because

fast growth rates while maintaining high quality is desired.

4.2.2 Conductivity

Films grown initially had very meager photo/dark conductivity ratios. It was observed

that these films exhibited very large photo current and very high dark current. This result

indicated that some doping was occurring. It was hypothesized that oxygen may have been

contaminating the films during the deposition so ppm TMB was admitted for later films. Films

that were grown with admission of TriMethylBorate exhibited significantly better photo/dark
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Figure 4.2 Growth rates with helium dilution versus pressure. Error bars
denote 90% confidence interval.

conductivity ratios, but had lower light and dark currents. As expected, the ratio of photo

and dark current ratios follow an exponential trend with activation energy, shown in figure

4.3. The improvement of photo and dark conductivity can be seen in table 4.2. This is an

important result that indicates that during depositions for devices, admission of TMB may

improve device quality, especially if used to grade the intrinsic layer doping.

Table 4.2 Film conductivity with TMB effects.

Sample Photo current Dark current P/D ratio Thickness TMB

2-10922 18.4µA 1.61nA 1.14× 104 1.02µm No
2-11073 17.0µA .147nA 1.16× 105 1.04µm No
2-11154 1.66µA 2.73pA 6.08× 105 .94µm Yes
2-11158 .449µA 1.29nA 3.48× 105 .94µm Yes

4.2.3 Hydrogen and oxygen content

FTIR indicated the expected result of lower hydrogen content in the amorphous structure.

These results helped prove the low hydrogen content of the films grown that was originally

sought after and expected. Figure 3.6 shows the resulting IR spectra for one of the helium
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diluted films.

Hydrogen content for three films is displayed in Table 4.3. An assumed error of about

±1% is observed on hydrogen content measurements. The results indicate a very low hydrogen

content of around 8% as expected. Films using hydrogen as a dilutant gas typically have hy-

drogen content greater than 10% if no chemical annealing techniques are performed. This low

hydrogen content will have important positive implications on the band gap of the material.

It should be restated that the errors in hydrogen content may be quite significant, as large as

a percent in either direction due to unstable substrate temperatures and inconsistencies in the

fitting routines. No clear temperature correlation was observed for hydrogen content over the

range of 300◦C to 400◦C.

Table 4.3 also contains information about the ratio of SiH bonds to SiH2 bonds. This

is an important parameter to measure since it is desired to minimize the number of SiH2

bonds. The results indicate that the ratio of SiH:SiH2 is quite large. This is a desired result

since the presence of SiH2 bonds can manifest itself in the form of device instability[23].

Table 4.3 Hydrogen content and a-Si:H bond composition

Sample Temperature (◦C) H content SiH:SiH2 ratio Substrate backing

2-11136 300 9.25% 5.23 Aluminum foil
2-11147 375 7.71% 5.61 Stainless steel slide
2-11167 390 9.28% 4.89 7059 glass slide

FTIR data can also provide information about the presence of bonds with oxygen. Oxygen

can be observed by the presence of a peak between 1000/cm and 1200/cm. Since this peak is

very small on all FTIR results, it was not possible to quantify and reasonable measurement of

oxygen content through bonding structure. Therefore the only deduction that can be made is

that there is a negligible amount of oxygen present in the film. This is also an expected result

because TMB was admitted during the deposition of all three films and TMBs reaction with

oxygen is primary to incorporation in the film.
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4.2.4 Activation energy

Activation energies of films grown with helium dilution differed significantly when using

TMB during the deposition. Average activation energies can be seen in the Table 4.4. Acti-

vation energies of films grown with admission of TMB are about .8eV, which as expected is

close to half of the band gap. Films grown without TMB typically possessed lower activation

energies. This indicates that the films are likely doped n-type, possibly from oxygen contam-

ination. The improved activation energy also improved photo/dark conductivity ratio Figure

4.3.

Table 4.4 Average activation energies

Film Description Activation energy (avg.)

a-Si:H with TMB .668eV
a-Si:H w/out TMB .793eV
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Figure 4.3 Photo/Dark conductivity ratios plotted versus activation en-
ergy.
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4.2.5 Urbach energy

Film Urbach energy was typically larger for films, in the lower 50meV range. However,

some films did exhibit mid 40meV Urbach energies. Figure 4.4 shows the film Urbach energies

plotted against E04 gap. Figure 4.4 also shows that when obtaining lower band gaps, there is

no clear sacrifice on material quality in the form of large Urbach energy.
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Figure 4.4 Urbach energy plotted versus E04 gap. Shows no clear trend
between Urbach energy and optical gap.
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4.3 Device Results

4.3.1 I-V curves and other electrical properties

Devices exhibited slightly lower VOC than hydrogen diluted a-Si:H. This is likely due to

the lowered hydrogen content of the intrinsic layer causing lowered optical gaps. Good quality

devices exhibited reasonable current 1.3-1.4mA, however it was expected that this would be

higher due to the lowered band gap. The lower than expected short circuit current ISC is likely

due to significantly higher defect density yielding a larger density of recombination centers.

ISC should increase if a method of decreasing defect density can be developed. Devices also

exhibited low fill factors, typically between .52 and .56 (see Figure 4.6). As a reference, Figure

4.5 shows the IV curve of a good hydrogen diluted a-Si:H device. The reduced shunt resistance

in Figure 4.6 is likely due to the lower µτeff product for holes, since they are not as easily

collected under a smaller electric field.

An important trend that should be observed with band gap and VOC is that it VOC de-

creases with decreasing band gap (see Figure 4.6). This is because carriers that collect in the

n+ and p+ region will alter the band structure so that diffusion currents can offset drift current

more easily. That is, the potential of both the p+ and n+ regions do not have to change as

much to approach the energy level of the conduction and valence band of the intrinsic material.

On the other hand if a larger band gap existed in the intrinsic region, the n+ region poten-

tial would have to increase until it nearly matched the larger band gap materials conduction

band. Therefore it would result in a larger open circuit voltage. This modest decrease in VOC

is expected to be offset by an increase in current due to a larger number of photo-generated

carriers.
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Figure 4.5 Hydrogen diluted sample IV curve.

Hydrogen Dilution

-15

-10

-5

0

5

10

15

-0.5 0 0.5 1

Voltage

C
ur

re
nt

 d
en

si
ty

 (
m

A
/c

m
^2

).
.

Voc = .856V
Isc = 1.46mA
FF = 63.2

Helium Dilution

-15

-10

-5

0

5

10

15

-0.5 0 0.5 1

Voltage

C
ur

re
nt

 d
en

si
ty

 (
m

A
/c

m
^2

).
.

Voc = .812V
Isc = 1.312mA
FF =56.2

Figure 4.6 IV curve for helium diluted device possessing an optical gap of
1.63eV.



www.manaraa.com

40

y = 0.6478x - 0.3685

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

1.75 1.76 1.77 1.78 1.79 1.8 1.81 1.82 1.83

E04 Gap (eV)

V
oc

 (
V

ol
ts

)

Figure 4.7 Voc plotted versus E04 Gap. Similar devices with varying op-
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4.3.2 Quantum efficiency

The results for QE indicate reasonable absorption at short wavelengths (>.4). At longer

wavelengths, it is difficult to extract very much useful information about absorption; sub gap

QE is used to provide that information. However the important parameter to look at is the

ratio of QE when the cell is under zero bias and when it is under a bias of .5 volts. This shows

how well the device will work when it is near its voltage of maximum power transfer.

The first QE plot (Figure 4.9) is of a device fabricated under helium dilution but without

graded doping in i1 near the i1-i2 interface (see Figure 1.1 for relative location). Since the

initial devices were fabricated without graded doping with TMB, collection of carriers at longer

light wavelengths became a problem when the cell was under positive bias. This can be seen

by the relatively high QE ratio at longer wavelengths. By using graded doping, collection can

be enhanced at longer wavelengths yielding a more consistent QE ratio. This can be observed

in Figure 4.10 where the device has graded doping near the i1-i2 interface. In the event that

series resistance begins to increase for a cell, the short wavelength QE ratio generally increases

significantly. The device in Figure 4.9 appears to have a minor series resistance problem which

is likely near the i2-p+ interface. All devices fabricated under helium dilution including the

two shown yielded peak absorption at 540nm. That means that these devices work best under

conditions where visible light has the highest intensity. No correlation between optical gap

and QE can be easily observed with this measurement technique.

By comparing the relative QE of helium dilution samples to hydrogen dilution samples,

it becomes evident that there is clearly some hole collection problems ocurring. Figure 4.7

shows a hydrogen dilution device that possesses superior quality to the helium dilution samples.

Both the helium and hydrogen diluted samples exhibited similar series resistances, therefore

the large QE ratio shown in the plot of Figure 4.9 is likely due to insufficient collection of holes.

This is a result of a poor µτeff product for holes.
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Figure 4.8 Hydrogen diluted sample. Normalized QE and QE ratio versus
wavelength plotted. Device fabricated without graded doping.
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Figure 4.10 Normalized QE and QE ratio versus wavelength plotted. De-
vice fabricated with graded doping in i1 near i1-i2 interface.
Device possesses an optical gap of 1.63eV

4.3.3 Device sub gap QE and Urbach energy

Device Urbach energy yields nearly the same information that film Urbach energy does.

For devices, it is much easier to approximate the linear region shown in Figure 4.11. Notice

that there is a shoulder that appears between 1.3 and 1.4eV in Figure 4.11. This indicates the

presence of mid gap trap states. These traps ultimately degrade the device. This shoulder was

persistent through nearly all sub gap QE plots, indicating the presence of defects.

For devices, it was found that Urbach energies were significantly lower (Figure 4.12). This

means that devices with sufficient material quality can be grown using helium dilution at 15mT.

When plotted against E04 optical gap, there is no clear trend that can be drawn. However,

this does serve to show that devices with low band gaps still possess usable characteristics.

Futako [6] indicated that using argon ion bombardment, lower band gaps could be obtained.

However, no comment was made about the quality of the devices and films produced under

those conditions. This is an important result because it indicates that ion bombardment can

produce low band gap devices without sacrificing material quality.
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Figure 4.11 Sub gap QE plot showing Urbach energy linear extrapolation.

Also indicating defects between 1.3 and 1.4eV.
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Figure 4.12 Device Urbach energy versus E04 gap.
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4.3.4 Electron and hole µτeff products

The relative ability for a hole or electron to move through the intrinsic layer and not

recombine can be expressed by the electron and hole µτeff products. This is measured for

electrons by evaluating the expression:

µτeff =
∆ρ
qGopt

(4.1)

Using films, electron mobilities are shown in Figure 4.13. Some electron µτeff products are

within the expected range however the variation in µτeff product yields little conclusive in-

formation. Whether electron µτeff product is affected by varying levels of ion bombardment

cannot be determined.
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Figure 4.13 Electron µτeff versus E04 gap.
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Hole µτeff product measurement is a bit more cumbersome. To measure hole µτeff prod-

ucts, a fitting of QE at varying voltages and wavelengths helps yield the hole µτeff product.

Since hole µτeff product is considerably less than electron µτeff product (by at least 2 orders

of magnitude) the only noticeable collection reducing mechanism for QE is the collection of

holes. The expression for QE is the following:

QE(λ) =
α · Sn

1 + α · Sn

[
1− exp

(−t
Sn

(1− α · Sn)
)]

(4.2)

Where:

Sn = µτE (4.3)

With all variables known except for µτeff , the product can easily be determined. Since this is

a transcendental equation the simplest way to solve for µτeff is to use a fitting approximation

technique. For devices, this yielded lowered hole µτeff products which were generally in the

10−9cm2/V range. Figure 4.14 shows the relationship of µτeff products for holes as bandgap

changes. Notice that when using TMB graded doping near the i1-i2 layer, improvement in

µτeff is observed.
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK

PV cell fabrication with helium dilution at low pressures through this research has indi-

cated some very promising results. Optical band gaps were consistently and easily brought

to the low 1.6eV range without the use of germanium. This was confirmed by the low hy-

drogen content of films grown using the technique. The initial hypothesis that a reduction in

hydrogen content could be realized by helium ion bombardment and that this would result

in decreased optical gap was successfully verified. However, devices created exhibited poor

quality compared to those of hydrogen diluted a-Si:H devices. The dimished performance was

attributed to a lowered µτeff product for holes which resulted in poor carrier collection un-

der bias. Further optimization should be able to consistently produce fill factors above 60

for helium dilution devices. Although devices possessed inferior performance, Urbach energies

suggested that varying ion bombardment did not play a large role in producing inconsistencies

in the amorphous structure. All devices and films exhibited reasonable growth rates keeping

this technique cost effective. Since helium is frequently part of PECVD systems, no reactor

modifications are necessary to use the technique.

There is still a sizable amount of work that is left to be done. The primary focus of

any future work should be concerned with the reduction of the defect density of films grown

under high ion bombardment conditions. This requires a more precise control of the level

of ion bombardment. The data has indicated that it is likely that over-bombardment is the

cause of the poor device properties. A different reactor design that uses a triode electrode

arrangement could be used to control the level of ion bombardment. Also, further band gap

reduction can be realized by using a chemical annealing technique for further bombardment.
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This would come at the cost of lower deposition rate. Information about the stability of de-

vices fabricated under these conditions and their susceptibility to the Staebler-Wronski effect

should also be performed. Additional measurements should be performed to help steer subse-

quent experiments with this technique to yield low defect density devices with low band gaps.

This would yield devices that would perform very well in tandem with other structures with

textured substrates and back reflectors. This research is an initial step in providing a narrow

band gap alternative to germanium alloyed devices.
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